Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(6): 2626-2634, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38224010

RESUMEN

A supercapacitor (SC) is considered as a promising energy storage device because of its high power density, fast charging/discharging speed and long cycle life. The transition metal oxides prepared by traditional methods face some challenges, such as low conductivity and uncontrollable pore size distribution. Therefore, we have prepared Prussian blue analogues (PBAs) using a coprecipitation method. By adjusting additives in the experimental process, uniform PBAs with a series of regular morphologies and structures are successfully prepared. Then the corresponding metal oxides are obtained by calcining precursors. We systematically study the influence of the morphology and structure of metal oxides Co3O4/Fe2O3 derived from PBAs on their electrochemical performance. The metal oxide with a partially hollow and octahedral structure shows excellent electrochemical performance. In a neutral electrolyte, the specific capacitance is 659.7 F g-1 at a current density of 0.5 A g-1. After 6000 cycles, the capacitance retention rate is 63.7%. An asymmetric supercapacitor (ASC) is constructed using Co3O4/Fe2O3 with an octahedral structure (CFMO-PVP-2) as the positive electrode and YP-50F as the negative electrode. The maximum energy density is 31.4 W h kg-1 at a power density of 1921 W kg-1. The maximum power density is 8421 W kg-1 at an energy density of 23.5 W h kg-1. The excellent electrochemical performance is attributed to the low resistance (Rw and Rct) and high DOH- derived from the oxide particles on the surface and within the inner parts of the octahedron, which are available for electron transport. Meanwhile, the open void between adjacent nanoparticles allows the electrolyte ions to diffuse more efficiently and ensures a much more effective area for participating in a reaction. The strategy will give new insights into designing high-performance SCs based on PBAs.

2.
Dalton Trans ; 52(36): 12948-12957, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37646327

RESUMEN

Supercapacitors (SCs) have been the subject of considerable interest because of their distinct advantages. The performance of SCs is directly affected by the electrode materials. Metal oxides derived from Prussian blue analogues (PBAs) are often used as electrode materials for SCs. Herein, we developed a multi-step strategy to fabricate ternary hollow metal oxide (CuO/NiO/Co3O4) heterostructures. The core-shell structured PBA (NiHCC@CuHCC) with Ni-based PBA (NiHCC) as the core and Cu-based PBA (CuHCC) as the shell was prepared by a crystal seed method. The ternary metal oxide (CuO/NiO/Co3O4) with a hollow structure was obtained by calcinating NiHCC@CuHCC. The prepared CuO/NiO/Co3O4 demonstrates an excellent specific capacitance of 262.5 F g-1 at 1 A g-1, which is 27.4% and 16.2% higher than those of CuO/Co3O4 and NiO/Co3O4, respectively. In addition, the material showed outstanding cycling stability with a capacitance retention of 107.9% after 3000 cycles. The two-electrode system constructed with CuO/NiO/Co3O4 and nitrogen-doped graphene hydrogel (NDGH) demonstrates a stable and high energy density of 27.1 W h kg-1 at a power density of 1037.5 W kg-1. The capacitance retention rate was 100.7% after 4000 cycles. The reason for the excellent electrochemical properties could be the synergistic effect of the introduced heterojunction of CuO/NiO, the hollow structure, and various metal oxides. This strategy can greatly inspire the construction of SC electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...